IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 10, OCTOBER 2007

1867

Real-Time Fetal Heart Monitoring in Biomagnetic
Measurements Using Adaptive Real-Time ICA
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Abstract—Electrophysiological signals of the developing fetal
brain and heart can be investigated by fetal magnetoencephalog-
raphy (fMEG). During such investigations, the fetal heart activity
and that of the mother should be monitored continuously to
provide an important indication of current well-being. Due to
physical constraints of an fMEG system, it is not possible to use
clinically established heart monitors for this purpose. Consid-
ering this constraint, we developed a real-time heart monitoring
system for biomagnetic measurements and showed its reliability
and applicability in research and for clinical examinations. The
developed system consists of real-time access to fMEG data, an
algorithm based on Independent Component Analysis (ICA),
and a graphical user interface (GUI). The algorithm extracts the
current fetal and maternal heart signal from a noisy and arti-
fact-contaminated data stream in real-time and is able to adapt
automatically to continuously varying environmental parameters.
This algorithm has been named Adaptive Real-time ICA (ARICA)
and is applicable to real-time artifact removal as well as to related
blind signal separation problems.

Index Terms—Adaptive, clustering, fetal, independent compo-
nent analysis, magnetoencephalography, real-time systems.

I. INTRODUCTION

ETAL magnetoencephalography (fMEG) is a completely
F noninvasive, passive, and innocuous method enabling in-
vestigations on fetal brain activity in utero. In order to perform
fMEG investigations on healthy fetuses and fetuses at risk, the
fetal well-being should be monitored continuously in real-time.
Certain aspects of fetal well-being can be quantified by the fetal
heart signal [1]. Furthermore, maternal well-being affects the
fetus [2]. Therefore, the maternal heart signal should be moni-
tored as well. Both the maternal and the fetal heart signals are
contained in the fMEG; they are referred to as magnetocardiog-
raphy (MCG). There are clinically established heart monitoring
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Fig. 1. (a) 151-channel SQUID fMEG system SARA. (b) Photograph showing
the positioning of a pregnant woman during an fMEG recording.

systems but they cannot be applied during biomagnetic mea-
surements. Consisting of metallic and electronic components,
these devices would interfere with the fMEG signal. Hence,
there is a need to establish ways to enable fetal and, simultane-
ously, maternal heart monitoring during fMEG investigations.

The most obvious approach is an analysis of the data provided
by an fMEG system; we will use the term “biomagnetic data”
to refer to these data, which always contain both encephalic
(fMEG) and cardiac (MCG) signals. The aim of analyzing the
biomagnetic data is to extract the fetal and maternal heart signal
in real-time from a data stream containing both signals as well
as noise and artifacts. Thereby, continuously varying environ-
mental parameters, such as maternal breathing or varying po-
sition and orientation of the fetus due to movements, must be
compensated for automatically.

Several methods exist that extract the fetal heart signal from
data obtained by fetal magneto- or electrocardiography [3]-[8].
Furthermore, analyses can be performed by Independent Com-
ponent Analysis (ICA) [9]-[13]. To our knowledge, none of
these methods has been used for real-time heart monitoring; for
some methods it would be impossible due to their computational
burden. Thus, our goal was first to develop a new approach that
enables real-time application of ICA, and second, based on this
approach, to create a system that enables real-time heart moni-
toring in fMEG.

II. MATERIALS AND METHODS

A. fMEG System

Measurements were performed with the SQUID fMEG
system SARA (VSM MedTech Ltd., Fig. 1) [14]. The system is
installed in an electromagnetically shielded room. The mother
sits and leans her abdomen against an anatomically shaped
sensing surface, which contains an array of 151 SQUID sensors
and covers the mother’s anterior abdominal surface from the
perineum to the top of the uterus.
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B. Test Environment

The real-time heart rate monitoring system was tested on
the following system: Intel Xeon 2.8 GHz dual processor,
512 kB Cache, 2 GB RAM. The following software was used
for creation and tests of the real-time heart monitoring system:
Linux 2.4.18-26.7.xsmp, Red Hat Linux 7.3 2.96-112, gcc
2.96, Matlab V6.5.1.199709 R13 SP1, FastICA 2.4, RealTime
1/21/2004, Acq 4.18.

C. Dataset

Sixteen datasets of 15 pregnant subjects were recorded with
the SARA system. The study was approved by the local Insti-
tutional Review Board. Each subject signed an informed con-
sent. Gestational age was between 27 and 39 weeks. A sample
rate of 312.5 Hz and 151 channels were used for recording.
The strength of fetal movements (ranging from no movements
to strong movements) was judged by the mother and ultrasonic
measurements before and after the investigation.

Method II-D is included for performance comparison to the
new system, which incorporates Methods II-Eto II-1.

D. Initial Algorithm (Only for Comparison)

Our initial heart rate extraction algorithms, the first published
in [15] and the second (described below) an extension of the
former, were designed to calculate heart rates based on analyses
of a signal’s energy. These two algorithms are real-time com-
patible and allow the detection of fetal and maternal R-peaks;
however, false detections occur during analysis.

The major steps of this energy based algorithm can be de-
scribed as follows: Based on channel positions, the signals
recorded by a fixed set of channels are designated as fetal or
maternal. After high-pass filtering (Butterworth, fourth order,
10 Hz), the maternal and fetal R-peaks, R,,(n) and Rs(n),
respectively, are detected. This is accomplished by threshold
detection with the thresholds 6,, = 3.5 - STD(g,,) and
6y = 2.7- STD(gy); where g.,, and gy is the mean signal of
the corresponding signal group and ST'D the standard devia-
tion. The factors were chosen based on heuristics. Due to false
detections occurring in R,,(n) and Rs(n), a heuristic method
is applied for correction. A periodic signal is reconstructed by
removing unreasonable peak detections and completing missing
ones, whereas the influence of detected peaks on the time point
of interest decreases with temporal distance. This method is
balanced in the sense that it tries to maintain a stable heart rate
while still being flexible enough to keep track of heart rate varia-
tions. For the remainder of this paper, the term “algorithm EB”
(energy based) refers to this algorithm plus heuristic.

E. Real-Time Access to fMEG Data

In typical MEG investigations, biomagnetic data are acquired
and saved by a control program. Afterwards, these data can
be analyzed off-line. For real-time data access, as required
for the real-time heart monitoring system, a support program
(RealTime, VSM MedTech Ltd.) creates a shared memory
segment in memory. Thereby, the control program collects and
subsequently writes biomagnetic data (in the form of packets)
into the shared memory segment during recordings. The sup-
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port program constantly checks for packets within the storage.
If a packet is present, it will be read by the support program.
We modified the support program (written in C/C++) in order
to make biomagnetic data accessible to other applications. Due
to our modifications, we are able to arbitrarily address each
sensor and data value.

The real-time heart monitoring system was developed using
Matlab (MathWorks Inc., MA, USA). We created an interface
with C/C++, which enables bidirectional communication be-
tween C/C++ (the real-time access) and Matlab, by utilizing
the functions of the header file “engine.h” and so called “MEX-
files”. This interface can be used for other on-line applications as
well. For our purpose, the interface completely controls the data
transfer between the real-time access and the real-time heart
monitoring system.

However, the mode of operation of the protected software
delivered with the fMEG system (mainly the packet-wise data
transfer) creates an artificial delay between signal occurrence
and accessibility. Thus, a maximum delay of 100 ms can be
reached for sample rates of 625 Hz and upwards, 200 ms for
312.5 Hz [16].

F. Independent Component Analysis

Data provided by an fMEG system are mixtures of signals
emitted by multiple (independent) sources. These sources are
mainly the maternal and fetal heart, the fetal brain, movements
or muscle activity of the mother and fetus, and noise. ICA [17]
allows the extraction of the fetal and maternal heart signals from
this mixture and can be described as follows:

If s;, ¢ € [1,m], are the signals emitted by m indepen-
dent sources s, and n is the number of sensors simultaneously
recording these signals over time ¢, the recorded data =, j €
[1, n], of each sensor contain signals originating from more than
one source, i.e., each sensor records a mixture of the sources.
Assuming a linear, time-invariant, and memoryless mixing, this
can be formulated as

r=A-s )

where A is called the mixing matrix and ¢ = [z1;. .
8 = [81;...58m]

In order to recover the original source signals s;, the mixture
must be inverted. Consequently, each ICA method estimates the
mixing matrix A with respect to & and provides a set of indepen-
dent components. These components (y;) ultimately constitute
estimates of s;. It should be noted that ICA provides no scaling
information about s;. This means that successive scaling does
not constitute an additional constraint for further processing.
Based on [9], [12], [18]-[20], we selected FastICA [21], [22] for
the heart signal extraction. It is based on a fixed-point iteration
scheme and utilizes maximization of non-Gaussianity measured
by kurtosis or approximated negentropy. Generating maximum
non-Gaussian components is equivalent to generating maximum
independent components, as stated by the central limit theorem.
By default, FastICA starts with a randomly initialized mixing
matrix A but especially the possibility of initializing FastICA
with a predefined mixing matrix A* constitutes the basis of our
Adaptive Real-time ICA (ARICA). If A* is used for initializa-
tion, certain components can be selected in advance and conver-
gence can be significantly accelerated.

.;Zn) and



WALDERT et al.: REAL-TIME FETAL HEART MONITORING IN BIOMAGNETIC MEASUREMENTS USING ADAPTIVE REAL-TIME ICA

G. Noise Level

In order to select the clearest fetal and maternal component,
the noise level of each extracted component must be determined.
Therefore, each component y; is scaled so that the maximum
absolute value equals 1. Afterwards, the R-peaks and other high
amplitude heart signals, such as S- and T-peaks, are removed
by threshold detection (amplitudes larger than two times the
standard deviation are set to 0), resulting in y¥. With n being
the number of samples of y;, the sum of point-wise distances
between the component and its low-pass filtered (LP) counter-
part (Butterworth, fourth order, 6.25 Hz) then reflects the noise
level:

NoiseLevel(yi) = Sy (1) = LP (3 ()| Vi. (@)
t=1

H. Clustering

One problem of ICA is that a single source may project to
several components, i.e., several extracted components reflect
the signal of one source. These similar components can be
grouped for further processing by clustering. Thereby, the
degree of similarity is computed by a distance function. A pos-
sible distance function is mutual information (MI) [23], which
measures the level of dependence and also covers nonlinear
relations (higher order statistics) between the components. The
distance between two components is calculated by pair-wise
MI as follows: MI(X,Y) = H(X)+ HY) — H(X,Y);
where H(X) and H(Y) are the entropies of X and Y; and
H(X,Y) is the joint entropy of X and Y. Estimators for
multivariate (higher order) MI were taken into consideration
[24]. However, their computational burden was too high and
clustering using pair-wise MI fulfilled requirements. After
computing the n-over-2 pair-wise MI values (n being the
number of components), clustering is performed using the
Matlab functions “linkage” and “cluster”.

1. Wavelet Denoising

The signal-to-noise ratio of the extracted components can be
improved by wavelet denoising [10]. Wavelet denoising is based
on wavelet transformation, which can be applied to transform a
signal from time domain into wavelet domain [25], i.e., wavelet
coefficients. Thereby, large coefficients reflect main features of
the signal, whereas details are reflected in small coefficients.
The noise in the original signal is removed by omitting small
coefficients before applying an inverse wavelet transformation.
Thus, the process of wavelet denoising is described as follows:

1) wavelet transformation — wavelet coefficients;

2) thresholding (coefficients with an absolute value less than
the threshold are set to 0);
3) inverse wavelet transformation — denoised signal.
We selected the Daubechies wavelet of length 8.1 We used this
approach to denoise the fetal and maternal signals extracted by
FastICA. The threshold was heuristically determined and set
to 3.

A corresponding software package is available at http://nt.eit.uni-kl.de/
wavelet/download.html free of charge.
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Fig. 2. (a) Flowchart showing main parts of data flow of the real-time heart
monitoring system (NLR: Noise Level Ranking; MI-C: Mutual Information
Clustering; BPM: Beats Per Minute; GUI: Graphical User Interface; WT:
Wavelet Transformation). The gray rectangle depicts ARICA. (b) Compu-
tational realization of data transfer and communication within ARICA. The
left and right gray areas represent working space of Matlab session 1 (S1)
and Matlab session 2 (S2); the middle gray area represents a shared memory
segment.

III. IMPLEMENTATION

The flowchart of Fig. 2(a) depicts the data flow and main parts
of the real-time heart monitoring system. Our approach realizing
ARICA is marked by a gray rectangle; details of implementation
are shown in Fig. 2(b). The following steps describe the different
parts of the system.

1) The fetal and maternal heart and muscle activity, fetal brain
activity, and noise are recorded by the fMEG system.

2) The real-time access provides these data to a C/C++
—Matlab interface; from this point on the data are analyzed in
Matlab.

3) The preprocessing starts with the fixed selection of 16 sen-
sors distributed uniformly over the sensor array. This selection
covers the whole abdomen (independence of fetus’s position)
and provides an amount of data which is sufficient to analyze
heart activity and processable in real-time.

4) The signals of these 16 sensors are high-pass filtered
(Butterworth, fourth order, 1.5 Hz) in order to remove possible
offset, trend, and low-frequency artifacts originating from
breathing, for instance.

5) The preprocessed signals are then provided to ARICA. As
can be seen in the flowchart in Fig. 2(a), ARICA consists of two
identical ICA algorithms, ICAoffline and ICAonline, which run
in parallel and analyze the biomagnetic data. Both algorithms
are able to interact using shared memory [Fig. 2(b)].

5a) At the beginning, ICAoffline evaluates the filtered sig-
nals and estimates a mixing matrix A (representing 10 compo-
nents), which enables a separation of the mixed signals into sev-
eral components.
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Fig.3. Eight components extracted by ICAoffline, scaled and ranked according
to their noise level (Noise Level Ranking). The numbers on the right side indi-
cate the cluster assignment by MI-Clustering (1-fetal, 2-maternal, abscissa re-
flects sample number, ordinate reflects scaled output, sample rate is 312.5 Hz).
The upper graph of Fig. 5 represents the raw biomagnetic signal (of one channel)
underlying these components.

5b) These components are ranked according to their noise
level (lowest noise level first).

5c) After Noise Level Ranking, the components are clustered
into two groups using MI-Clustering. As a result, the clearest
fetal and maternal component is now at the top of its corre-
sponding group.

The last two steps are visualized in Fig. 3; it can be seen that
all maternal and all fetal components are separately grouped.

5d) The maternal group is identified by possessing a higher
correlation between its top component and the signal of a sensor
recording mainly maternal heart activity, i.e., the sensor closest
to the mother’s heart.

5e) The clearest fetal and maternal component can be traced
back to the mixing matrix A, which is reduced accordingly to
A*. A* now reflects only the clearest fetal and maternal signal
possible based on the provided data.

5f) After this step, ICAonline is called to evaluate current bio-
magnetic data. ICAonline, initialized with A*, slightly adapts
A* (i.e., refines the entries of A* according to the current data
in order to provide the best possible separation) and computes
the current fetal and maternal heart signal, which are displayed
in the GUI. Now, ICAonline is continuously called every time a
certain number (1 to 32 or more) of new samples per sensor is
available.

5g) Meanwhile, the interface constantly checks if ICAoffline
has completed previous calculations and is ready to estimate a
new mixing matrix A. If that is the case, it supplies new data
to ICAoffline (goto 5a). The resulting (reduced) new mixing
matrix A* is again used as initialization in ICAonline (goto 5f).
For details of temporal relations see Fig. 4.

6) As one of the last steps, Wavelet Denoising is applied to
the output of ICAonline, i.e., to the extracted fetal and maternal
heart signal.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 10, OCTOBER 2007

ICAoffline ] [ _1oooxt6 | | |
data stream .. X151 |
L L L |
[ L1 [ 1 L1 |
[ [T L1 L1 |
[ L1 [ | |
ICAonline <& || |I I| | |168x16| [ I]
[ LT LT L1 |
[ 1 L1 L1 |
| | T | T ] T J
[ANENUERNANN
] >

U time
Fig. 4. Temporal relations between ICAonline and ICAoffline. The boxes rep-
resent biomagnetic data processed by ICAonline and ICAoffline at a particular

time. The spaces between the ICAoffline boxes indicate the time required to
process data, estimate the mixing matrix A, and to create A*.

x10°

278
279 « —
-2.801 4
0 100 200 300 400 500 600 700 800 900

ICA & Noise Level Ranking & MI-Clustering

1 T T T T T T T T T
0 (»M:-‘Mv\-vwm
-1 1 1 | | | | | 1

0 100 200 300 400 500 600 700 800 900
1 T T T T T T T T T
0 WWN\ e ~\/’“vﬁ w”v»« e
-1 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900

Wavelet Denoising

4
T T T T T T T T T
A A P S SV S A
W Zp a0 4 G @0 W W @
T

500 600 700 800

900

e

Q

I B

0 100 200 300 400

Lho o

Fig. 5. Input and output of the real-time heart monitoring system. Abscissa
shows sample number, sample rate is 312.5 Hz. The top graph shows a typical
biomagnetic signal (recorded with fMEG) containing fetal brain activity, noise
and maternal and fetal heart activity (ordinate reflects magnetic field strength
with offset in Tesla). Overlapping maternal and fetal heart beats are indicated
by arrows. The middle graph shows a fetal and maternal component extracted by
ARICA. The lower graph shows the same components after Wavelet Denoising.
The heart rates and these heart curves are presented in the GUI.

7) The denoised signals are displayed in the GUI.

8) R-peaks are detected by threshold detection. The instan-
taneous heart rate is calculated based on pair-wise temporal
spacing between R-peaks and, subsequently, displayed in the
GUL

IV. RESULTS

The main stages of data processing are summarized in Fig. 5.
The upper graph shows a raw biomagnetic signal recorded by
one sensor of the fMEG system. The middle graph visualizes
the result of applying FastICA (initialized with mixing matrix
A*), Noise Level Ranking, and MI-Clustering, i.e., the modules
of ARICA, to the presented and the remaining 15 simultane-
ously recorded, raw biomagnetic signals. The bottom graph is
obtained after wavelet denoising; the heart rates are computed
based on these extracted signals.
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Fig. 6. Fetal heart rate computed by the algorithm EB with (thin, solid line) and
without (dashed line) heuristic and the real-time heart monitoring system (bold
line). It is important to note that only the graph of the algorithm EB without
heuristic and of the real-time heart monitoring system reflects the instantaneous
heart rate.

Sixteen recordings of 15 pregnant subjects were analyzed.
Test results are described by the example visualized in Fig. 6.
The extracted heart rate is shown for the algorithm EB without
heuristic (dashed line), the algorithm EB (thin, solid line), and
the real-time heart monitoring system utilizing ARICA (bold
line). The borders (first and last second) should not be consid-
ered; they result solely from test setup. Only the fetal heart rate
is shown; the maternal heart signal is much stronger and can
be evaluated easily. To provide an overall quality measure, the
extracted heart rates were validated by off-line detection of ma-
ternal and fetal heart signals: A template matching algorithm
followed by orthogonal projection was used to attenuate the de-
tected signal. This procedure is used on a regular basis to at-
tenuate the maternal and fetal MCG in fMEG recordings and,
therefore, allows the detection of maternal and fetal heart beats
[26]. False or missed detections were corrected by hand after vi-
sual inspection to obtain an absolute correct reference for all 16
datasets (h1). Possible outliers in the heart rates extracted by the
real-time heart monitoring system were excluded by hand in ad-
vance (h2),1i.e., 98.61% of all data points were used. The corre-
lation coefficient () of A1 and h2 was computed: median(r) =
0.96, first quartile(r) = 0.92, third quartile(r) = 0.98; for
each dataset r was highly significant (p < 0.001).

As can be seen in Fig. 6, the algorithm EB without heuristic
fails to detect several heart beats or detects too many, the algo-
rithm EB (with heuristic) can balance (but is clearly affected by)
these false detections, and the real-time heart monitoring system
utilizing ARICA provides a stable performance. It is important
to recall that the algorithm EB uses a heuristic, i.e., the presented
heart rate graph does not reflect the instantaneous heart rate; it is
rather an optimized, automatic interpretation of the actual heart
rate. In contrast, the output of the real-time heart monitoring
system does reflect the instantaneous heart rate.

For an application of the real-time heart monitoring system
on a single processor system, we tested the effect of initializing
ICAonline every time with the same mixing matrix A*. In this
approach, A* is calculated only once at the beginning and is not
regularly updated (according to current data) by a second ICA
(ICAoffline) running in parallel. Fig. 7 exemplifies the result
of these tests. Compared to the heart rate extracted by ARICA
(bold line), the graph of the aforementioned approach shows
one outlier (thin, solid line). Similar outliers can be observed
in other recordings as well. These results show that the overall
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Fig. 7. Fetal heart rate computed by the algorithm EB (dashed line), the real-
time heart monitoring system (bold line), and the approach in which A* is cal-
culated only once at the beginning and is not regularly updated (thin, solid line).
The bold line and the thin, solid line are almost identical, whereas the dashed
line shows variation from the others and the thin, solid line shows an outlier. Fur-
thermore, the low-pass filtered output of the real-time heart monitoring system is
shown (gray line). The heart rate extracted by the algorithm EB without heuristic
is omitted for the sake of clarity.

performance is better with ARICA. In addition, regular updates
of A* speed up the system (real-time requirements) and allow
adaptivity to nonstationary signal sources.

In further tests (not shown), we ensured that the obtained
results were not due to a randomly matching beginning of the
evaluated datasets. Therefore, the first 1600 samples of each
dataset were removed. The real-time heart monitoring system
was applied to this shortened dataset, whereas the removal of
1600 samples ensures that the two ICA algorithms process dif-
ferent data windows than they do for the whole dataset.

A delay between heart beat occurrence and its reflection in
an updated heart rate and heart signal in the GUI is mainly
based on the real-time access (up to 200 ms for a sample rate
of 312.5 Hz due to a packet-wise data transfer) and the time
needed by ICAonline computations (30 ms to 70 ms, depending
on convergence speed). Another contribution to the delay con-
sists of polling for user inputs and refreshing of the GUI (up
to 4 ms). The data transfer and communication between both
Matlab sessions (ICAonline and ICAoffline) by shared memory
constitutes a negligible delay in sub-ms range (<1 ms). In sum-
mary, the maximum delay is approximately 374 ms and the min-
imum is approximately 68 ms, if the heart beat occurs shortly
before a packet is transferred and analyzed. In the field of heart
monitoring, this range still justifies the use of the term real-time.
It should be noted that, despite the varying delay, the sampling
process itself preserves the chronological information regarding
when a certain signal occurred. Running in parallel and without
affecting the delay, ICAoffline performs each calculation within
3 s to 5 s (depending on convergence speed). This means that
every 3 s to 5 s new data are analyzed and the mixing matrix A
is updated to current data.

V. DISCUSSION AND CONCLUSION

We presented a robust, autonomous heart monitoring system
enabling real-time observation of fetal and maternal heart ac-
tivity in biomagnetic measurements (fMEG). This system is
based on ARICA, an Adaptive Real-time ICA. ARICA, in turn,
utilizes an automatic selection of the clearest fetal and maternal
component. This selection is based on MI-Clustering and the
developed Noise Level Ranking.
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Being based on ICA, the system even allows separation of
completely overlapping or synchronous heart beats (Fig. 5),
which is nearly impossible for methods evaluating the signal’s
energy. The uniform channel distribution makes the system
independent of the fetus’s position, i.e., no prior knowledge
is used. Actually, the only prior knowledge used consists of
the choice of a channel containing mainly maternal signals (to
identify the maternal cluster). However, this choice does not
pose a constraint because the maternal heart is a strong signal
source located at a well defined position.

The reliability of the real-time heart monitoring system was
verified through analyses of 16 datasets and their modified
versions.

The functionality of ARICA was proven by proper func-
tioning of the real-time heart monitoring system. Based on
FastICA, the approach of estimating current mixing matrices
A in parallel and to transfer the corresponding data by shared
memory turned out to be very effective. Even if environmental
parameters change, the regular new initializations by A* ensure
that ICAonline can compute the current fetal and maternal sig-
nals without interruption in real-time. Applying these regular
initializations also ensures that movements of the mother or
fetus (the signal sources) are compensated for and possible
changes in their well-being during investigations are tracked
automatically. Even recordings containing moments of strong
maternal or fetal movements were reliably processed.

In general, ICA methods cannot separate signals that are cor-
related. The question in the context of the real-time heart moni-
toring system is, whether there is any coupling between the fetal
and maternal heart. Van Leeuwen et al. [27] found that such (nu-
merical) couplings occur occasionally only.

With regard to ICA generating independent components,
clustering these components using MI as distance function
seems counterintuitive. The following two points should be
considered in this context: ICA methods generate compo-
nents that are as independent as possible, and MI also covers
higher order dependence. However, it rarely occurs that a
fetal component slips into a maternal cluster or vice versa. If
this incorrectly assigned component additionally contains the
lowest noise level, two identical heart signals and rates (both
fetal or maternal) are extracted. This malfunction is corrected
by the next ICAoffline calculation, which takes about 3 sto 5 s,
and indicated in the GUI by a flashing light.

The term “adaptive” in ARICA was chosen for two reasons.
First, ARICA can handle nonstationary sources and varying en-
vironmental conditions. Second, due to the possibility of in-
creasing the update rate by parameter settings, every new data
sample available could be taken into account. If more processors
were used, the mixing matrices could be updated more often and
the continuously running ICA could work on a data window
sliding in real-time sample per sample over the data to be an-
alyzed. Thereby, the advantages of a batch/semi-adaptive ICA
method are utilized in an adaptive manner, whereas the usage of
learning rules/sequences, which strongly affect results and can
even destroy convergence [21], is avoided.

The GUI presents current heart rates and extracted heart
curves. General features of the latter could be interpreted by
experts to gain further information about fetal and maternal
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well-being. The peak ratio between and temporal occurrences
of the PQRST-curve elements are preserved throughout the
whole data processing. An automatic classification of the fea-
tures by Support Vector Machines or related methods remain
future possibilities.

ARICA may be applied for adaptive real-time blind signal
separation in several fields. It allows automatic real-time arti-
fact removal or extraction of signals of interest by replacing the
peak signal extraction in the current algorithm with appropriate
modifications according to the investigated signal characteristic.
Thus, ARICA may be utilized to provide clear signals to be fur-
ther analyzed in real-time, which could also improve brain-ma-
chine interface applications.
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